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@ The EAGLE model.
@ The multilevel structure of EAGLE.
@ Multilevel Emulation: taming heavy simulators.

@ History Matching (provisional results)
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@ Andromeda Galaxy: closest large galaxy to our own milky way.
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@ Andromeda Galaxy: closest large galaxy to our own milky way.

@ Hubble Deep Field: covers approximately 2 millionths of the sky but contains
thousands of galaxies.
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The EAGLE Model

@ EAGLE (Evolution and Assembly of GaLaxies and their Environments) is a
simulation aimed at understanding how galaxies form and evolve.
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The EAGLE Model

@ EAGLE (Evolution and Assembly of GaLaxies and their Environments) is a
simulation aimed at understanding how galaxies form and evolve.

@ See http://icc.dur.ac.uk/Eagle/ for details.

@ It models the formation of structures in a cosmological volume of size
(100 Megaparsecs)?®, approximately (326 million light-years)>.

@ This volume contains approximately 10,000 galaxies of the size of the Milky Way
or bigger, enabling a comparison with detailed galactic surveys.

@ The simulation starts soon after the Big Bang, when the Universe is still very
uniform - no stars nor galaxies had formed yet.
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The EAGLE Model

@ Dark matter enables structures like galaxies to form, even while the Universe is
expanding rapidly: gas falling into these dark matter structures cools and forms
stars and hence galaxies.
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The EAGLE Model

@ Dark matter enables structures like galaxies to form, even while the Universe is
expanding rapidly: gas falling into these dark matter structures cools and forms
stars and hence galaxies.

@ However core collapse supernovae (exploding massive stars), and Active Galactic
Nuclei (bursting supermassive black holes), severely limit what fraction of the gas
forms stars.

@ Modelling these aspects accurately is key to produce a virtual universe that looks
like the real one.

@ The EAGLE simulation is one of the largest cosmological hydrodynamical
simulations ever, using nearly 7 billion particles to model the physics.

@ It took more than one and a half months of computer time on 4064 cores of the
DiRAC-2 supercomputer in Durham (about 5 million hours of CPU time).
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The EAGLE Model

@ EAGLE has less flexibility than previous models, e.g. semi-analytic models such
as Galform (17-20 input parameters), as it instead relies on fundamental physics
to model many processes directly, without requiring many tuning parameters.
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@ EAGLE has less flexibility than previous models, e.g. semi-analytic models such
as Galform (17-20 input parameters), as it instead relies on fundamental physics
to model many processes directly, without requiring many tuning parameters.

@ However, it still has 7 uncertain input parameters x, that relate to the core collapse
supernovae and supermassive black holes.

@ EAGLE output f(x) can be compared to a variety of observed galaxy data z:
Stellar Mass Function, Galaxy Sizes, ...

@ We have just been awarded 60 million hours of processor time in Switzerland
(CSCS, via PRACE) to do a single run 15 times larger than the current volume.

@ It may take approximately 1.5 years in real time to complete.

@ | have been asked to help choose the location in 7-dimensional space of that run
(f&ck,f&ck,f&ck).
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History Matching

@ Primary Scientific Question: what is the region X of 7-dimensional input space
that produces model outputs consistent with the observed data?
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History Matching

@ Primary Scientific Question: what is the region X of 7-dimensional input space
that produces model outputs consistent with the observed data?

@ We will use the computer model technique of “history matching" to identify X by
cutting out implausible regions of input space (and find out whether X" is empty:
different from usual Bayesian calibration).

@ This will involve emulation (of course) and the assessment of many relevant
uncertainties (observation error, model discrepancy etc).

@ Primary statistical question: we obviously cannot hope to cover 7-dimensional
space with such a slow model, but how can we even emulate it?

@ Thankfully, EAGLE has been set up to run at 4 levels of accuracy, with each level
approximately 8 times faster than the previous level: we will hence setup multilevel
emulators, and use these in the history match.
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EAGLE Outputs

Gas Temperature

Visual spectrum Dark Matter density
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EAGLE Observed data Stellar Mass Function
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@ The Stellar Mass function gives the density of galaxies, binned by stellar mass.

@ Very important for any Galaxy simulation to match this data set.
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@ The Stellar Mass function gives the density of galaxies, binned by stellar mass.

@ Very important for any Galaxy simulation to match this data set.
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EAGLE Observed data Stellar Mass Function
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@ The Stellar Mass function gives the density of galaxies, binned by stellar mass.

@ Very important for any Galaxy simulation to match this data set.
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EAGLE Observed data Galaxy Sizes

0
%]
g o
&5 -
>
x
3
]
(0]
0
Q4
o
S 4
T T T T T T
6 7 8 9 10 11
logio(M-)

@ We have just begun the analysis of Galaxy sizes...
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EAGLE Input Parameters

@ To perform one run, we need to specify numbers for each of the following 7 inputs:

Input Parameter min  max | Transform Process
SNII_MinEnergyFraction 0.1 1.0 - Supernova
SNII_MaxEnergyFraction 1.0 5.0 - "
SNII_rhogas_power 0.1 3.0 - "
SNII_rhogas_physdensnormfac 1 50 logio "
SNII_Width_logTvir_dex 0.1 3 logio "
BlackHoleViscousAlpha 10®° 108 logio Blackholes
BH_ConstantHeatTemp 108 10° logio "
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EAGLE Input Parameters

@ To perform one run, we need to specify numbers for each of the following 7 inputs:

Input Parameter min  max | Transform Process
SNII_MinEnergyFraction 0.1 1.0 - Supernova
SNII_MaxEnergyFraction 1.0 5.0 - "
SNII_rhogas_power 0.1 3.0 - "
SNII_rhogas_physdensnormfac 1 50 logio "
SNII_Width_logTvir_dex 0.1 3 logio "
BlackHoleViscousAlpha 10®° 108 logio Blackholes
BH_ConstantHeatTemp 108 10° logio "

@ What input values = € X should we choose to get ‘acceptable’ outputs?
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Multilevel Structure of EAGLE

@ The standard EAGLE run (at 100Mpc) is far too expensive to repeat more than a
couple of times.
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@ The standard EAGLE run (at 100Mpc) is far too expensive to repeat more than a
couple of times.

@ However, thankfully EAGLE has been designed to run at 4 different levels of
accuracy, with each level approximately 8 times faster than the previous one.

@ These levels correspond to smaller volumes of the Universe:

Level | Volume'/® | Approximate Evaluation Time
1 12.5 Mpc 1/512
2 25 Mpc 1/64
3 50 Mpc 1/8
4 100 Mpc 1
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Multilevel Structure of EAGLE

@ The standard EAGLE run (at 100Mpc) is far too expensive to repeat more than a
couple of times.

@ However, thankfully EAGLE has been designed to run at 4 different levels of
accuracy, with each level approximately 8 times faster than the previous one.

@ These levels correspond to smaller volumes of the Universe:

Level | Volume'/® | Approximate Evaluation Time
1 12.5 Mpc 1/512
2 25 Mpc 1/64
3 50 Mpc 1/8
4 100 Mpc 1

@ EAGLE is stochastic: lower levels a) have much more noise and b) are structurally
different from the higher levels due to limits on sizes of galaxies that can form
(among other things).
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Design: Latin Hypercubes

@ Design: Construct a batch of runs of the model using a space filling maximin Latin

Hypercube design:
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@ These designs are both space filling and approximately orthogonal, both desirable
features for fitting emulators.
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@ These designs are both space filling and approximately orthogonal, both desirable
features for fitting emulators.

@ We have performed runs at level 1 and level 2 in the first wave.
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Initial Design of EAGLE runs

@ First Question: are the fast but noisy level 1 runs (at 12.5 Mpc), which we can run
in 2 days on 32 processors, informative for higher levels at all?
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in 2 days on 32 processors, informative for higher levels at all?

@ We constructed a 20 point LHC design, which was a) maxmin across the 7 inputs,
b) maximin across 4 inputs thought to be strongest, and c) had no large holes in
those 4 inputs.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 17 /63



Initial Design of EAGLE runs

@ First Question: are the fast but noisy level 1 runs (at 12.5 Mpc), which we can run
in 2 days on 32 processors, informative for higher levels at all?

@ We constructed a 20 point LHC design, which was a) maxmin across the 7 inputs,
b) maximin across 4 inputs thought to be strongest, and c) had no large holes in
those 4 inputs.

@ We ran this design at level 1 and at level 2 (each level 2 run takes about 8 days on
64 processors).

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 17 /63



Initial Design of EAGLE runs

@ First Question: are the fast but noisy level 1 runs (at 12.5 Mpc), which we can run
in 2 days on 32 processors, informative for higher levels at all?

@ We constructed a 20 point LHC design, which was a) maxmin across the 7 inputs,
b) maximin across 4 inputs thought to be strongest, and c) had no large holes in
those 4 inputs.

@ We ran this design at level 1 and at level 2 (each level 2 run takes about 8 days on
64 processors).

@ Result: after smoothing, the level 1 runs are very informative for a subset of
(low/medium mass) stellar mass function outputs: can use in history matching.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 17 /63



Initial Design of EAGLE runs

@ First Question: are the fast but noisy level 1 runs (at 12.5 Mpc), which we can run
in 2 days on 32 processors, informative for higher levels at all?

@ We constructed a 20 point LHC design, which was a) maxmin across the 7 inputs,
b) maximin across 4 inputs thought to be strongest, and c) had no large holes in
those 4 inputs.

@ We ran this design at level 1 and at level 2 (each level 2 run takes about 8 days on
64 processors).

@ Result: after smoothing, the level 1 runs are very informative for a subset of
(low/medium mass) stellar mass function outputs: can use in history matching.

@ We were then allowed to run 20, possibly followed by another 20, level 1 runs.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 17 /63



Initial Design of EAGLE runs

@ First Question: are the fast but noisy level 1 runs (at 12.5 Mpc), which we can run
in 2 days on 32 processors, informative for higher levels at all?

@ We constructed a 20 point LHC design, which was a) maxmin across the 7 inputs,
b) maximin across 4 inputs thought to be strongest, and c) had no large holes in
those 4 inputs.

@ We ran this design at level 1 and at level 2 (each level 2 run takes about 8 days on
64 processors).

@ Result: after smoothing, the level 1 runs are very informative for a subset of
(low/medium mass) stellar mass function outputs: can use in history matching.

@ We were then allowed to run 20, possibly followed by another 20, level 1 runs.

@ We hence designed two more 20pt LHCs such that the first 40pts also formed a
LHC with the above properties, as did the total 60pts.
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Initial Design: 60 runs at level 1 for 12.5Mpc

-
I
R
AW, .
NN
_ ANA .
= . !
< o | : .
s : :
Re] 1 1 3
¥ | |
1 ' '
o | : :
, . .
T T T T
8 9 10 1

logo(M-)

@ Level 1: 60 runs of the 12.5 Mpc simulator.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017



Initial Design: 20 runs at level 2 for 25Mpc
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@ Level 2: 20 runs of the 25 Mpc simulator.
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@ Level 1: 60 runs of the 12.5 Mpc simulator.
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Initial Design: 60 smoothed runs at level 1 for 12.5Mpc
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@ Level 1: 60 runs of the 12.5 Mpc simulator, smoothed.
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Initial Design: 20 runs at level 2 for 25Mpc
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@ Level 2: 20 runs of the 25 Mpc simulator.
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Initial Design: 20 smoothed runs at level 2 for 25Mpc
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@ Level 2: 20 runs of the 25 Mpc simulator, smoothed.
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Initial Design: 60 smoothed runs at level 1 for 12.5Mpc
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@ Level 1: 60 runs of the 12.5 Mpc simulator, smoothed.
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Initial Design: 20 smoothed runs at level 2 for 25Mpc
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@ Level 2: 20 runs of the 25 Mpc simulator, smoothed.
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Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(xz) and the system or reality y, and failing to embed them and the
observations z into a statistical model.
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y= ")+

where we define (¥ to be the Model Discrepancy, which represents the difference
between /) () and the Universe y at some ‘best input’ z*.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 26/63



Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(xz) and the system or reality y, and failing to embed them and the
observations z into a statistical model.

@ Our goal will be to link the real Universe y with EAGLE at the 4th level /) (x)
y= ")+

where we define (¥ to be the Model Discrepancy, which represents the difference
between /) () and the Universe y at some ‘best input’ z*.

@ (Actually, we will explore linking at different levels using y = f*) (z*) 4+ ¢*, with
k=1,....5).

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 26/63



Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(xz) and the system or reality y, and failing to embed them and the
observations z into a statistical model.

@ Our goal will be to link the real Universe y with EAGLE at the 4th level /) (x)
y= ")+

where we define (¥ to be the Model Discrepancy, which represents the difference
between /) () and the Universe y at some ‘best input’ z*.

@ (Actually, we will explore linking at different levels using y = f*) (z*) 4+ ¢*, with
k=1,....5).

@ We relate the true system y to the observed data z via observation errors e:

z=y+e

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 26/63



Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(xz) and the system or reality y, and failing to embed them and the
observations z into a statistical model.

@ Our goal will be to link the real Universe y with EAGLE at the 4th level /) (x)
y= ")+

where we define (¥ to be the Model Discrepancy, which represents the difference
between /) () and the Universe y at some ‘best input’ z*.

@ (Actually, we will explore linking at different levels using y = f*) (z*) 4+ ¢*, with
k=1,....5).

@ We relate the true system y to the observed data z via observation errors e:

z=y+e

@ If we assert probabilistic relations between the random vectors £, ¢ e and z*
e.g. independence, we can proceed.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 26/63



Linking EAGLE to the Real Universe

@ A common major problem is caused by not acknowledging the difference between
model f(xz) and the system or reality y, and failing to embed them and the
observations z into a statistical model.

@ Our goal will be to link the real Universe y with EAGLE at the 4th level /) (x)
y= ")+

where we define (¥ to be the Model Discrepancy, which represents the difference
between /) () and the Universe y at some ‘best input’ z*.

@ (Actually, we will explore linking at different levels using y = f*) (z*) 4+ ¢*, with
k=1,....5).

@ We relate the true system y to the observed data z via observation errors e:

z=y+e

@ If we assert probabilistic relations between the random vectors £, ¢ e and z*
e.g. independence, we can proceed.

@ Often, scientists may be able to specify say E[¢'*], E[¢] (often zero), and Var[¢)],
Var[e]. Remember ¢ and ¢ are vectors.
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for /) (z) we proceed as follows.
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for /) (z) we proceed as follows.

@ For each of the outputs of interest f(l)( '), we pick active variables z 4, then
emulate univariately (at first) using:

(@ Zﬁm gii(za;) +ul (2a,) + 0 (@)
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for /) (z) we proceed as follows.

@ For each of the outputs of interest f(l)( '), we pick active variables z 4, then
emulate univariately (at first) using:

(@ Zﬁm gii(za;) +ul (2a,) + 0 (@)

e The 3_, 8., gi;(w4,) is a 3rd order polynomial in the active inputs, with /3’
unknown constants: very important to include such global structure here.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017



Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for /) (z) we proceed as follows.

@ For each of the outputs of interest f(l)( '), we pick active variables z 4, then
emulate univariately (at first) using:

(@ Zﬁm gii(za;) +ul (2a,) + 0 (@)

e The 3_, 8., gi;(w4,) is a 3rd order polynomial in the active inputs, with /3’
unknown constants: very important to include such global structure here.

° uﬁ”(m 4,) is a Gaussian process representing local variation, with covariance:

Covlul (za,),ul(@h,)] = (o) expl—|aa, —ala, [ /67
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for /) (z) we proceed as follows.

@ For each of the outputs of interest f(l)( '), we pick active variables z 4, then
emulate univariately (at first) using:

(@ Zﬁm gii(za;) +ul (2a,) + 0 (@)

e The 3_, 8., gi;(w4,) is a 3rd order polynomial in the active inputs, with /3’
unknown constants: very important to include such global structure here.

° uﬁ”(m 4,) is a Gaussian process representing local variation, with covariance:

Covlul (za,),ul(@h,)] = (o) expl—|aa, —ala, [ /67

@ The nugget Uﬁl)(x) models the effects of inactive variables as random noise.
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Emulation Theory: Single Level

o To emulate at the lowest level, i.e. for /) (z) we proceed as follows.

@ For each of the outputs of interest f(l)( '), we pick active variables z 4, then
emulate univariately (at first) using:

(@ Zﬁm gii(za;) +ul (2a,) + 0 (@)

e The 3_, 8., gi;(w4,) is a 3rd order polynomial in the active inputs, with /3’
unknown constants: very important to include such global structure here.

uE”(m 4,) is a Gaussian process representing local variation, with covariance:
Covlul (wa,), ul” (@h,)] = (o) exp[~|wa, — a/a, |7 /0{7"]
@ The nugget vﬁl)(x) models the effects of inactive variables as random noise.

@ The Emulators give the expectation E[f'"(x)] and variance Var[f'" (x)] at point
for each output of interest and are fast to evaluate.
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Emulation Theory: Bayes Theorem

@ Quick Aside: to emulate a general function f;(x) we have a choice of approaches.
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Emulation Theory: Bayes Theorem

@ Quick Aside: to emulate a general function f;(x) we have a choice of approaches.

@ We perform an initial wave 1 set of n runs at input locations ("), 2 ... z(™
giving a column vector of model output values

Di = (fi(a™), fila®),.... fi(z™)"
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Emulation Theory: Bayes Theorem

@ Quick Aside: to emulate a general function f;(x) we have a choice of approaches.

@ We perform an initial wave 1 set of n runs at input locations ("), 2 ... z(™
giving a column vector of model output values

D; = (fi(zD), fi2?),... fiz")"
@ If we had provided prior distributions for each part of the emulator we could use
Bayes Theorem to update our beliefs 7(f:(x)) about f(x):

m(Dilfi(@))m(fi(x))

m(fi(x)|Di) =

where 7(fi(z)) and 7 (f;(x)| D) are the prior and posterior pdfs for f;(z).
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Emulation Theory: Bayes Theorem

@ Quick Aside: to emulate a general function f;(x) we have a choice of approaches.

@ We perform an initial wave 1 set of n runs at input locations ("), 2 ... z(™
giving a column vector of model output values

D; = (fi(zD), fi2?),... fiz")"
@ If we had provided prior distributions for each part of the emulator we could use
Bayes Theorem to update our beliefs 7(f:(x)) about f(x):

(D) = TPilfi(@)m(fi(z))
m(fi(z)|Ds) =(DD)

where 7(fi(z)) and 7 (f;(x)| D) are the prior and posterior pdfs for f;(z).

@ This follows the standard Bayesian statistics paradigm, however this involves a
detailed, full specification of the joint prior distribution: a complex and difficult task,
and is hard to calculate.
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Emulation Theory: Bayes Linear Methods

@ There is a better way: if we are instead prepared to specify just the expectations,
variances and covariances of the parts of the emulator, we can use Bayes Linear
methodology.
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Emulation Theory: Bayes Linear Methods

@ There is a better way: if we are instead prepared to specify just the expectations,
variances and covariances of the parts of the emulator, we can use Bayes Linear
methodology.

@ This is an alternative version of Bayesian statistics that is easier to specify and far
easier to calculate with.
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Emulation Theory: Bayes Linear Methods

@ There is a better way: if we are instead prepared to specify just the expectations,
variances and covariances of the parts of the emulator, we can use Bayes Linear
methodology.

@ This is an alternative version of Bayesian statistics that is easier to specify and far
easier to calculate with.

@ Instead of Bayes Theorem we use the Bayes linear update:
Ep,(fi(z)) = E(fi(x))+ Cov(fi(x), Di)Var(D;) ™" (Di — E(D;))
Varp, (fi(z)) = Var(fi(z)) — Cov(fi(z), Di)Var(D;) ™" Cov(D;, fi())

where Ep, (fi(z)) and Varp, (fi(z)) are the Bayes Linear adjusted expectation
and variance for f;(x) at new input point =, and are all that are needed for the
subsequent implausibility measures and history match.
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Emulation Theory: Bayes Linear Methods

@ There is a better way: if we are instead prepared to specify just the expectations,
variances and covariances of the parts of the emulator, we can use Bayes Linear
methodology.

@ This is an alternative version of Bayesian statistics that is easier to specify and far
easier to calculate with.

@ Instead of Bayes Theorem we use the Bayes linear update:

Ep,(fi(®) = E(fi(x) + Cov(fi(z), Di)Var(Ds) (D — E(Dy))
Varp, (fiz)) = Var(fi(x)) — Cov(fi(x), Di)Var(D:) " Cov(D, fi(x))

where Ep, (fi(z)) and Varp, (fi(z)) are the Bayes Linear adjusted expectation
and variance for f;(x) at new input point =, and are all that are needed for the
subsequent implausibility measures and history match.

@ (End emulation choices Aside).
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Emulation: a 1D Example
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that " (z) — f(l)(:n):

(1) ZB( ) Jru (TA) Jrv(l)(l,)
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that " (z) — f(l)(:n):

(1) ZB( ) Jru (TA) Jrv(l)(l,)

@ and similarly for level 2:

fP@) =328 gi(wa) +u® (@a) + 0 (2)

J
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that " (z) — f(l)(:n):
(1) ZB( ) )+ ul (TA) + vm(m)

@ and similarly for level 2:

FP@) =387 gj(wa) + u® (wa) + 0¥ (2)
J
e Welink 5*) to 5" via:
6;'2) _ ajﬁj(l) + bj
with a;, bs;, ﬁ,ff) uncorrelated, and give a simple BL specification:
Ela;] =1, Covla;,ar] = Uijf;jk:

E[bj] = U, COV[Z)‘»,'7 bk] - ag_] 5jk
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Multilevel Emulation

@ Once we have constructed the emulator for level 1, we can use it to construct a
highly informed prior for the level 2 emulator.

@ We have for a univariate emulator at level 1, dropping the 7 index for simplicity so
that " (z) — f(l)(:n):

(1) Z/g( ) Jru (TA) Jrv(l)(l,)

@ and similarly for level 2:

FP@) =387 gj(wa) + u® (wa) + 0¥ (2)
J
e Welink 5*) to 5" via:
6‘52) _ ajﬁj('l) + bj
with a;, bs;, ﬁ,ff) uncorrelated, and give a simple BL specification:
Ela;] =1, Covla;,ar] = Uijf;jk:

E[bj] = U, COV[Z)‘»,'7 bk] - ag_] 5jk

@ So the a; describe a multiplicative uncertainty, and the b; an uncertain offset.
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Multilevel Emulation

@ Therefore the expectation and covariance of 3* becomes

E[Y] = E[BV]
Cov[g?, B = Cov[B”, BV] + o2, 0n (Var[8V] + E[BV)?) + o3, 85k
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Multilevel Emulation

@ Therefore the expectation and covariance of 3* becomes

E[B”] = E[B"]
Cov[B®, 8] = Cov[p, V] + 02,8k (Var[B"] + BIBV1?) + o7, 6k

@ We also link u? (z.4) to u(z4) via
u(z)(m,q) _ u(l)(:cA) +u(2/1)(IA)

where u™ (1) and «*/V)(z4) are uncorrelated and «*/?) (1) has zero mean
and covariance structure

Cov[u® V) (x2),u® M (&/4)] = 02y rs) (w4 — 7'a)

where 0>, = v07 1), and v and ¢, are to be specified.
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Multilevel Emulation

@ Finally, we decompose the nugget vfl)(:c) into two uncorrelated pieces:
v (@) = v (2) + 0§ ()

where v§1> () represents the inactive variables and vg) () the stochasticity due to

finite galaxy counts. We have that

Covo® (), (@)] = oy 8z —a') = (o) + %) )o@ — ')
I S
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Multilevel Emulation

@ Finally, we decompose the nugget vfl)(:c) into two uncorrelated pieces:
v (@) = v (2) + 0§ ()

where v§1> () represents the inactive variables and vg) () the stochasticity due to

finite galaxy counts. We have that

Covo® (), (@)] = oy 8z —a') = (o) + %) )o@ — ')
I S

@ Similarly we have for the level 2 nugget:
v (2) = v (2) + 05 (@)

and make the judgement that o°,, ~ o, but that
7.” ’U)«

where V; are the volumes of the EAGLE simulation at level i.
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.

@ We can now update this emulator by the set of 20 level 2 runs.
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.
@ We can now update this emulator by the set of 20 level 2 runs.

@ We can construct priors for and update the level 3 and 4 emulators similarly (but
we currently only have one run for these).
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.
@ We can now update this emulator by the set of 20 level 2 runs.

@ We can construct priors for and update the level 3 and 4 emulators similarly (but
we currently only have one run for these).

@ We can instead propose informative designs for the level 3 and 4 runs based on
detailed priors.
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Multilevel Emulation

@ We now have all the pieces needed to construct the prior for the level 2 emulator.
@ We can now update this emulator by the set of 20 level 2 runs.

@ We can construct priors for and update the level 3 and 4 emulators similarly (but
we currently only have one run for these).

@ We can instead propose informative designs for the level 3 and 4 runs based on
detailed priors.

@ But now back to History Matching to the observed data.
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Observation Errors: Stellar Mass Function

Seven different observed Stellar Mass Functions
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© | — Li&White
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logso(M-)

@ Often simulations are compared to the most recent SMF. But this is ‘theory laden’
data, which often under reports systematic errors.
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Observation Errors: Stellar Mass Function

Seven different observed Stellar Mass Functions

o
-
o _|
I
< 4
1
=
=
>
Ke]
w _|
I
—— D'Souza
—— Baldry
© | — Li&White
Bernardi M14_(d-f)
—— Bernardi M14_d
Bernardi MPA
T4 Bernardi WM11
T T T T T T T
9.0 9.5 10.0 10.5 11.0 1.5 12.0

logso(M-)

@ Often simulations are compared to the most recent SMF. But this is ‘theory laden’
data, which often under reports systematic errors.

@ To counter this we gathered the 7 major data sets and amalgamated them.
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Model Discrepancy

@ The cosmologists have performed one good run, called the reference run, at all 4
levels.
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Model Discrepancy

@ The cosmologists have performed one good run, called the reference run, at all 4
levels.

@ The aim of this project is to find the set of input parameter values that will give
equivalent or better matches to the observed data than this reference run.
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Model Discrepancy

@ The cosmologists have performed one good run, called the reference run, at all 4
levels.

@ The aim of this project is to find the set of input parameter values that will give
equivalent or better matches to the observed data than this reference run.

@ We are discussing possible model discrepancy specifications, but start with the
simple univariate specification that Var[¢(*)] is large enough to ensure the
reference run is always within 3 sigma of the observed data.
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @, that are good to emulate.
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @, that are good to emulate.

@ We can now calculate the Implausibility /(;)(x) at any input parameter point z for
each of the ¢ € ; good outputs. This is given by:

Ep, (fi(z)) — 2|
Varp, (fi(z)) + Var[e;] + Varle;])
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @, that are good to emulate.

@ We can now calculate the Implausibility /(;)(x) at any input parameter point z for
each of the ¢ € ; good outputs. This is given by:

|Ep, (fi(z)) — zi*
(Varp, (fi(x)) + Var[e;] + Var[e;])

1(27;)(%) =

@ Ep,(fi(x)) and Varp, (fi(z)) are the emulator expectation and variance (at
whatever level we are working with).
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @, that are good to emulate.

@ We can now calculate the Implausibility /(;)(x) at any input parameter point z for
each of the ¢ € ; good outputs. This is given by:

|Ep, (fi(z)) — zi*

Ity (@) = (Varp, (fi(z)) + Var[e;] + Varle;])

@ Ep,(fi(x)) and Varp, (fi(z)) are the emulator expectation and variance (at
whatever level we are working with).

@ z; are the observed data and Var[e;] and Varle;] are the (univariate) Model
Discrepancy and Observational Error variances.
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @, that are good to emulate.

@ We can now calculate the Implausibility /(;)(x) at any input parameter point z for
each of the ¢ € ; good outputs. This is given by:

|Ep, (fi(z)) — zi*

Iy (@) = (Varp, (fi(z)) + Var[e;] + Varle;])

@ Ep,(fi(x)) and Varp, (fi(z)) are the emulator expectation and variance (at
whatever level we are working with).

@ z; are the observed data and Var[e;] and Varle;] are the (univariate) Model
Discrepancy and Observational Error variances.

@ Large values of ;) (x) imply that we are highly unlikely to obtain acceptable
matches between model output and observed data at input .
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Implausibility Measures (Univariate)

@ First identify set of outputs i € @, that are good to emulate.

@ We can now calculate the Implausibility /(;)(x) at any input parameter point z for
each of the ¢ € ; good outputs. This is given by:

|Ep, (fi(z)) — zi*

Iy (@) = (Varp, (fi(z)) + Var[e;] + Varle;])

@ Ep,(fi(x)) and Varp, (fi(z)) are the emulator expectation and variance (at
whatever level we are working with).

@ z; are the observed data and Var[e;] and Varle;] are the (univariate) Model
Discrepancy and Observational Error variances.

@ Large values of ;) (x) imply that we are highly unlikely to obtain acceptable
matches between model output and observed data at input .

@ Small values of /(;)(x) do not imply that « is good!
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Implausibility Measures (Univariate)

@ We can combine the univariate implausibilities across the outputs in @; by
maximizing over outputs:

In(z) = e I (x) 1)
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Implausibility Measures (Univariate)

@ We can combine the univariate implausibilities across the outputs in @; by
maximizing over outputs:

In(z) = max I (x) 1)
@ We can then impose a cutoff
Iv(z) < cm )
in order to discard regions of input parameter space z that we now deem to be

implausible.
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Implausibility Measures (Univariate)

@ We can combine the univariate implausibilities across the outputs in @; by
maximizing over outputs:

In(z) = max I (x) 1)
@ We can then impose a cutoff
Iv(z) < cm )
in order to discard regions of input parameter space z that we now deem to be

implausible.

@ The choice of cutoff ¢, is often motivated by Pukelsheim’s 3-sigma rule, which
does not require precise distributions.
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Implausibility Measures (Univariate)

@ We can combine the univariate implausibilities across the outputs in @; by
maximizing over outputs:

In(z) = max I (x) 1)
@ We can then impose a cutoff
Iv(z) < cm )
in order to discard regions of input parameter space z that we now deem to be

implausible.

@ The choice of cutoff ¢, is often motivated by Pukelsheim’s 3-sigma rule, which
does not require precise distributions.

@ We may simultaneously employ other choices of implausibility measure: e.g.
multivariate, second maximum etc.
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Multivariate Implausibility Measure

@ If we have constructed a multivariate model discrepancy, we can define a
multivariate Implausibility measure, using only the outputs in Q;:

I*(z) = (Ep, (fi(z)) — 2)" Var[f(z) — 2] (Ep, (fi(x)) — 2),
which becomes:
I*(z) = (Ep(f(x)) — 2)" (Varp(f(z)) + Var(e] + Varle]) " (Ep(f(z)) — 2)

@ where Var|[f(z)], Var[e] and Var[e] are now the multivariate emulator variance,
multivariate model discrepancy and multivariate observational errors respectively
(all matrices).

@ We now have two implausibility measures I, (z) and I(z) that we can use to
reduce the input space.

@ We impose suitable cutoffs on each measure to define a smaller set of
non-implausible inputs.
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History Matching via Implausibility: a 1D Example

Emulator of Model Output f(x)

Model Output f(x)

Input Parameter x
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example
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History Matching via Implausibility: a 1D Example

Emulator of Model Output f(x)
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Common problems & mistakes: One shot analysis.

@ Often the set of acceptable inputs X only occupies a tiny fraction of the original
input space.
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Common problems & mistakes: One shot analysis.

@ Often the set of acceptable inputs X only occupies a tiny fraction of the original
input space.

@ Therefore we do not want to use a single one shot space filling design, as this
would waste a lot of runs in implausible parts of the space.
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Common problems & mistakes: One shot analysis.

@ Often the set of acceptable inputs X only occupies a tiny fraction of the original
input space.

@ Therefore we do not want to use a single one shot space filling design, as this
would waste a lot of runs in implausible parts of the space.

@ Instead we perform a series of iterations or waves, designing in ever smaller
non-implausible regions of the input space (i.e. batch sequentially).
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Common problems & mistakes: One shot analysis.

@ Often the set of acceptable inputs X only occupies a tiny fraction of the original
input space.

@ Therefore we do not want to use a single one shot space filling design, as this
would waste a lot of runs in implausible parts of the space.

@ Instead we perform a series of iterations or waves, designing in ever smaller
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@ Often the set of acceptable inputs X only occupies a tiny fraction of the original
input space.

@ Therefore we do not want to use a single one shot space filling design, as this
would waste a lot of runs in implausible parts of the space.

@ Instead we perform a series of iterations or waves, designing in ever smaller
non-implausible regions of the input space (i.e. batch sequentially). Fairly obvious.

@ However, we would also not want to use the same statistical form for the emulator
across all waves, as the model will most likely behave very differently over the
original input space X; compared to X which may be a billion times smaller. Less
obvious.

@ Therefore we must fit emulators of possibly different structure and complexity at
each iteration: to forget this is a mistake (it also has important implications for the
full design calculation).

@ This is even more important for the multilevel emulation case: we cannot hope to
create accurate level 4 emulators over the whole input space.
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Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the current
non-implausible volume by X;, at each stage or wave we:
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We use an iterative strategy to reduce the input parameter space. Denoting the current
non-implausible volume by X;, at each stage or wave we:

@ Design and perform a set of runs over the non-implausible input region X
@ Identify the set ;1 of informative outputs that we can emulate easily

© Construct new emulators for f;(x), where i € Q;1 defined only over X
© Evaluate the new implausibility functions 7,(x),i € Q;+1 only over X;

@ Define a new (reduced) non-implausible region X1, by Iy (z) < car, which
should satisfy X C X1 C &;

@ Unless (a) the emulator variances are now small in comparison to the other
sources of uncertainty (model discrepancy and observation errors) or (b)
computational resources are exhausted or (c) all the input space is deemed
implausible, return to step 1
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Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the current
non-implausible volume by X;, at each stage or wave we:

@ Design and perform a set of runs over the non-implausible input region X
@ Identify the set ;1 of informative outputs that we can emulate easily

@ Construct new emulators for f;(x), where i € Q;1 defined only over X;
© Evaluate the new implausibility functions 7,(x),i € Q;+1 only over X;

@ Define a new (reduced) non-implausible region X1, by Iy (z) < car, which
should satisfy X C X1 C &;

@ Unless (a) the emulator variances are now small in comparison to the other
sources of uncertainty (model discrepancy and observation errors) or (b)
computational resources are exhausted or (c) all the input space is deemed
implausible, return to step 1

@ If 6(a) true, generate a large number of acceptable runs from the final
non-implausible volume X
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History Matching via Implausibility: a 1D Example

Emulator of Model Output f(x)

Model Output f(x)

Input Parameter x
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Minimised Implausibility Plots

@ Using the speed of the emulators, we can now blitz the input space by evaluating
the implausibility
In(x) = ma Iy ()

across a huge latin hypercube, where

|Ep, (fi(z)) — =]
(Varp, (fi(z)) + Var[e;] + Varle;])

I(Qi)(m) =
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Minimised Implausibility Plots

@ Using the speed of the emulators, we can now blitz the input space by evaluating
the implausibility
In(x) = ma Iy ()

across a huge latin hypercube, where

72 (z) = |Ep, (fi(x)) — Zqz|2
(1) (Varp, (fi(z)) + Var[e;] + Varle;])

@ To visualise this, we can project down into 2 dimensions, by minimising the
implausibility.
Ip(z') = m,i/n I (2’2"

where 2’ is a 2 vector of the plotting variables, and x”" a 5 vector spanning the
remaining inputs not in the plot.
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Minimised Implausibility Plots

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, Inf
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Zero Emulator Variance Implausibility Plots

@ Low implausibility at  can be due to the emulators predicting a good match at z,
or just due to high emulator uncertainty there.
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Zero Emulator Variance Implausibility Plots

@ Low implausibility at  can be due to the emulators predicting a good match at z,
or just due to high emulator uncertainty there.

@ We can examine which of these options is the case by plotting the zero emulator
variance implausibility:
In(x) = ma I (2)

where now |Ep, (fi(z)) |2
16(®) = Rarp (@) + Varlel] £ Varle)

@ We minimise the implausibility to obtain

Ip(z') = n;/]/n Ine (2’2"

as before.
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@ Low implausibility at = can be due to the emulators predicting a good match at z,
or just due to high emulator uncertainty there.

@ We can examine which of these options is the case by plotting the zero emulator
variance implausibility:
In(x) = ma I (2)
where now

2 _ |Ep, (fi(z)) — 2
16 = Fare] + vared)

@ We minimise the implausibility to obtain

Ip(z') = min Ing (', 2'")
x

as before.
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Minimised Implausibility Plots
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Zero Emulator Variance Implausibility Plots

LF bin=9.1, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, Inf
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Zero Emulator Variance Implausibility Plots
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Results: Level 2, Minimised Implausibility

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75,1,1.5, 2, 3, 4, 5, Inf
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Results: Level 2, Zero Emulator Variance Implausibility
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Results: Level 2, Minimised Implausibility
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Results: Level 2, Minimised Implausibility, with Ref Run

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75,1,1.5, 2, 3, 4, 5, Inf
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Results: Level 2, Zero Emulator Variance Implausibility, with Ref Run

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75,1,1.5, 2, 3, 4, 5, Inf
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Results: Level 1, Minimised Implausibility, with Ref Run
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Results: Level 2, Minimised Implausibility, with Ref Run

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75,1,1.5, 2, 3, 4, 5, Inf
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Results: Level 1, Zero Emulator Variance Implausibility, with Ref Run

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75,1,1.5, 2, 3, 4, 5, Inf
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Results: Level 2, Zero Emulator Variance Implausibility, with Ref Run

LF bin =10.9, cols. rep. implaus. cuts at 0, 0.25, 0.5, 0.75,1,1.5, 2, 3, 4, 5, Inf
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Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 62/63



Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.

@ We have emulated at levels 1 and 2 and history matched to rule out bad parts of
the input space.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 62/63



Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.

@ We have emulated at levels 1 and 2 and history matched to rule out bad parts of
the input space.

@ Current results suggest we may be able to do better than the previous best run.

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 62/63



Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.

@ We have emulated at levels 1 and 2 and history matched to rule out bad parts of
the input space.

@ Current results suggest we may be able to do better than the previous best run.

@ We are now in a position to design runs at level 3, and possibly level 4 (or do more
runs at levels 1 and 2).

lan Vernon (Durham University) Multilevel Emulation June 21, 2017 62/63



Conclusion

@ We have constructed a multilevel emulator for the EAGLE simulation.

@ We have emulated at levels 1 and 2 and history matched to rule out bad parts of
the input space.

@ Current results suggest we may be able to do better than the previous best run.

@ We are now in a position to design runs at level 3, and possibly level 4 (or do more
runs at levels 1 and 2).

@ We may then be in a position to do a "level 5" run, taking 1.5 years...
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