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OU MODELS 2) PLASIM-ENTS CLIMATE MODEL
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OU MODELS 3) PLASIM-GENIE CLIMATE-(CARBON CYCLE) MODEL
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Why emulation?

A single simulation with an intermediate complexity Earth system model typically
take days of computing

(“IPCC-complexity” models months of supercomputing)
A range of applications are very difficult (often intractable)
Open University emulation work falls in two main categories

1) Exploring relationships between high-dimensional input space and (high-
dimensional) output space, for calibration and process understanding

2) Interdisciplinary work, coupling climate models to e.g. economics, impacts,
biogeographic models



What is emulation?

Simulator
Variable forcing inputs .

High dimensional
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inputs

Emulator is statistically trained on the output of an ensemble of simulations

Limitations:
Each variable separately emulated
Emulator error
Cannot extrapolate beyond the “training ensemble”



Emulation (1) Scalar inputs -> scalar outputs

Scalar emulators
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Note Gaussian Process a widely-used alternative (we do use them too)
better emulation (reduced code error) with uncertainty estimate
though note: simulator uncertainty >> code error
GP more demanding of CPU, less transparent interpretation



Emulation (2) Scalar inputs -> high dimensional outputs

Singular vector decomposition and emulation

D = simulation data (G grid points x N simulations)

P = principal components (G grid points x C components)
E = Veigenvalues (C components x C components)

ST = component scores (C components x N simulations)
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where  g;is the 25-element vector of parameter and forcing inputs for the ith simulation
f, is a quadratic polynomial regression for the jth component score
i.e. emulation is reduced to a scalar function of inputs c.f. the standard emulation problem



Emulation (3) High dimensional inputs -> high dimensional outputs
Forcing fields (temperature and precipitation) -> Output fields (vegetation carbon density)
SVD applied to both input and outputs -> scalar PC scores

-> standard scalar emulation problem
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Holden et al 2015 “Emulation and interpretation of high dimensional climate model outputs” J. App. Stat.



Precalibration (or history matching)

The problem, to build a comprehensive map of output uncertainty from
high dimension input space.

We wish to restrict ourselves to using parameter inputs that simulate
“plausible” modern climate states

We vary many (~20) parameters, over their entire reasonable ranges

BUT small regions of this high-dimensional input space give reasonable
simulations (typically ~1%)

To derive, say, 250 plausible parameter sets by searching randomly with
the simulator might require

~ 250 * 100 simulations * 1 week CPU ~ 500 years CPU

-> Use emulators to search for plausible parameter space

Edwards et al 2011 “Precalibrating an intermediate complexity climate model” Climate Dynamics
Holden et al 2010 “A probabilistic calibration of climate sensitivity...” Climate Dynamics
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Holden, Edwards, Oliver, Lenton, Wilkinson,
2010 “A probabilistic calibration of climate
sensitivity...” Climate Dynamics

10 plausible ensemble
members

894 plausible members =
MPC parameter set

Plausible LGM
! Antarctic anomaly?

480 plausible members =
LPC parameter set




Precalibration reproduces the spatial structure of the tuned model @

ensemble average "traceable” parameters (Lenton et al 2006)
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...but provides wide range of feedback strengths \
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Calibrated model outputs
“A model-based constraint on CO, fertilisation”

Holden, Edwards, Gerten and Schaphoff 2013, Biogeosciences
Elevated atmospheric CO, stimulates photosynthesis, a major sink for anthropogenic
emissions (~25%)
Well demonstrated under controlled conditions, but highly uncertain in nature
e.g. nitrogen limitation or temperature limitation may be dominant controls in

some ecosystems

Top down, globally-averaged quantification — what global response reproduces
present day CO, when forced with historical emissions?

Application for a pre-calibrated ensemble



Calibration
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Interpreting model outputs
“Controls on the spatial distribution of oceanic 613C,.”

Holden, Edwards, Miiller, Oliver, Death and Ridgwell, 2013, Biogeosciences

Plants and fossil fuels are strongly depleted in 13C due to preferential uptake of light
carbon (12C) by photosynthesis

Ocean is a major sink for anthropogenic emissions of CO,. The imprint of is $3C used
to help constrain ocean uptake.

Oceanic 13C distribution is driven by complex interplay between
air-sea gas exchange
temperature dependent solubility
marine productivity
water column remineralisation of organic matter
ocean circulation
ocean mixing (wind driven and density driven)

Can a model help us understand the drivers and uncertainties of the 3C imprint?



EOFs of preindustrial (natural) $3C distribution in the ocean
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EOFs of Suess effect (fossil fuel burning) 13C and CO, ocean imprints

Atlantic Pacific Emulator coefficients
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Emulating spatial fields for coupling applications

1) Integrated Assessment Modelling

POLICY, LAW
|
ECONOMY, o REGIONAL
TECHNOLOGY IMPACTS
) i
EMISSIONS . CLIMATE
CHANGE

Climate simulations need to be very fast
-> only possible with highly simplified models

Climate needs to be spatially resolved (regionally variable impacts)
-> simple climate models are poorly suited

For robust decision making uncertainty should be quantified
-> single simulations are inadequate

-> parameter space should be sampled

The Open University



Developing a coupling emulator

~20 parameters
~500 simulations
Space-filling
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~500 simulations
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Holden et al 2014 “PLASIM-ENTSem v1.0: a spatio-temporal emulator of future climate change
for impacts assessment” Geoscientific Model Development




Emulated mean field (SAT) Emulated uncertainty field (precipitation)

DJF warming RCP4.5 (2100-2000) DJF Precipitation Change (2100-2000)
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Spatially resolved + uncertainty. Can deal with spatially variable forcing e.g aerosols



)

“Worldwide impacts of climate change on energy for heating and cooling’

Labriet et al 2013, Mitigation and Adaptation Strategies for Global Change

The energy sector is not only a major contributor to greenhouse gases, it is also
vulnerable to climate change and will have to adapt to future climate conditions.

-> Integrated study, coupling technological, economics and climate models



Degree Days — post-process mean and SD fields
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Validation of simulated present-day regional DDs

18°C global reference temperature
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Regional differences well captured.
Emulator warm bias (though note observational data historical)

Observations: Baumert and Selman, World Resources Institute, 2003



DJF Heating Degree Days (PLASIM GRID)

DJF Heating Degree Days
(population weighted onto TIAM regions)
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Fig. 9 Total final energy consumed for heating and cooling with and without climate change impacts in
China, India, FSU and Europe for no climate change (No CC), 3.3 °C (CC 3.3) and 5.7 °C (CC 5.7) scenarios
Global energy requirements approximately neutral
(heating and cooling approximately cancel)
But major regional differences and changes to energy sectors
(electricity/fossil fuel)



Emulating spatial fields for coupling applications
2) Spatial and temporal dynamics of biodiversity

Rangel, Colwell, Holden, Edwards, Gosling and Rahbek
work in progress
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Hawkins et al. 2006

Biodiversity is structured
in highly complex spatial
and temporal patterns

Many mechanisms have
been proposed to explain
biodiversity patterns

A coupled modelling
approach



Mechanisms

* Range shifts, contractions and expansions

* Evolutionary adaptation

* Long-distance dispersal to disjunct habitats

* Interspecific competition

* Allopatric speciation (isolated populations evolve differently)
* Extinction

Assumptions

* Species have tolerances to climate that affect their geographical
distributions over space and time.

* Climatic tolerances can evolve by natural selection in dynamic
environments.

e etal
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